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THE EFFECT OF ANTICLASTIC BENDING ON THE
CURVATURE OF BEAMS

R. J. POMEROyt

Engineering Department. University of Cambridge

Abstract-Anticlastic bending is examined and a concise presentation of the related bending deflection equations
is given. Previous work is reviewed and an approximate expression is then proposed which makes it possible.
with little additional labour, to include the effects of anticlastic bending in calculations of beam curvature.

NOTATION

a characteristic of beam on elastic foundation
E Young's modulus
F force
h thickness of beam
I second moment of area
l' second moment of area of deformed cross-section
k elastic foundation modulus
I length of principal beam
M applied bending moment
R radius of curvature of a narrow beam
t subscript denoting the transverse beam
w width of principal beam (i.e. length of transverse beam)
x distance from end of transverse beam
x' = w-x
Y yield point of material
}' width parameter
(J angle between adjacent sections of a bent beam
" beam curvature including anticlastic bending effects

Poisson's ratio
p radius of curvature of transverse beam
Ii radius of curvature of transverse beam per unit length
tP slope of the elastic line of curvature

THE BASIC EQUATIONS

A DESCRIPTION of the bending deflection of a beam is presented which includes the effects
of anticlastic bending. The subject has been discussed in previous articles and this approach
follows that of others, especially Searle (1]. We are concerned only with the principal beam
curvature, and with obtaining a clear physical picture of how this is influenced by anti­
clastic curvature.

t Present address: Computing Devices of Canada Ltd., P.O. Box 508, Ottawa 4, Canada.
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The application of a pure moment M to a narrow prismatic bar results in a curvature
described by the well-known expression:

1 M
R EI (1)

(2)

The bending is illustrated in Fig. 1a. The curvature l/R implies the existence ofa traverse or
anticlastic curvature of

-v
Rt=Jf'

It is observed in a wide beam, however, that the expected anticlastic curvature does not
develop. For such a beam, E in equation (1) is replaced by (E/1- v2

) in order to describe
the principal deflection satisfactorily. The question then arises: what expression describes
the curvature in the transitional case of a beam of "moderate" width subject to a moment
M?

Assuming that anticlastic bending takes place freely, the cross-section of a beam will
appear as shown in Fig. lb. The longitudinal stresses in the beam are given by S = My/!
and it is clear that these stresses, normal to the plane of Fig. 1b, give rise to a net tensile
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FIG. la. A beam bent to radius R by pure end moments M.
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FIG. Ib. Cross-section of a bent beam showing full anticlastic curvature.
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(3)

force in the cross-section ofthe beam near its edges and a net compressive stress in its centre.
Due to the principal curvature l/R, adjacent cross-sections are inclined at a small angle
de which leads to net forces towards the axis of curvature at the edges of the cross-section
and away from the axis of curvature at the middle. These forces produce a moment which
opposes anticlastic curvature and which must increase as the width of the beam increases.

Consider width dx of an elemental length dl of the bent beam. The radial force on this
portion is

F Eh dl dx_
= R2 y

where y is the displacement of the centroid of the element from the neutral surface. Equa­
tion (3) is a typical description of an elastic foundation. Thus it follows, as others have
observed, that the theory of beams on elastic foundation applies to the problem of anti­
clastic bending. This theory is well-known, and it is unnecessary to proceed with a detailed
derivation of the appropriate equations. They are available from Hetenyi [2] in a form
convenient for our purposes. The elemental length dl of the principal beam may then be
analysed as a "transverse" beam on elastic foundation of width dl and length w. The bend­
ing of this beam arises from the principal curvature through Poisson's ratio and, in the
absence of additional externally applied moments, its end curvature is equal to - viR.
The deflection of the centre line of a finite beam on elastic foundation with defined end
curvature is found from reference [2] to be:

2a2

Y= R k dl( , h . (sinh ax cos ax' - cosh ax sin ax'
sm aw+sm aw)

+sinh ax' cos ax - cosh ax' sin ax)
(4)

where x' = w-x and subscript t refers to the transverse beam. In equation (4) and sub­
sequent expressions the origin of x is taken at the end of the beam, following Hetenyi. This
disregard for the symmetry ofthe bending is justified later by the conci~essof the resulting
expressions. In equati<:>n (4), k is the foundation modulus or reaction pressure of the foun­
dation per unit deflections, found from equation (3):

(5)

(6)

and a is the characteristic, a parameter involving the ratio of the foundation stiffness to the
beam stiffness,

a = [k dl(l- V
2)J 1/4,

4EI,

The term (1- v2
) arises because the transverse beam is subject to lateral constraint. With

the governing parameters of the elastic foundation, k and a, it is possible to express quan­
titatively the bending resistance of the transverse beam. From this is obtained an expression
relating applied moment and curvature of the principal beam which accounts for the
effects of beam width.

Ifno width effects occur, the application of moment M will result in curvatures given by
equations (1) and (2). With the elastic foundation effect, however, the curvature l/R, will



280 R. J. POMEROY

p

(9)

(10)

(11 )

only be realized at the ends of the transverse beam. The transverse curvature elsewhere is
given by IIp = d2Yldx 2 which from equation (4) gives

-v 1
. h . (sinh ax cos ax' + cosh ax sin ax'

R sm aw+smaw

+ sinh ax' cos ax + cosh ax' sin ax).

The difference between the unrestrained transverse curvature l/R r and the actual transverse
curvature lip represents the restraining effect of the elastic foundation. Equation (7) gives
a curvature which is not uniform along the length of the transverse beam. However, the
average curvature is readily found from equation (7) :

1 1 (W 1 -y 2 [coshaw-cosaw]
P= ;)0 pdx = Ii: aw sinhaw+sinaw . (8)

Thus the restraining effect of the elastic foundation, expressed in terms of curvature.
becomes

1 1 v { 2 [coshaw-cosaw]}
P- R r = Ii. 1-aw sinhaw+sinaw

using equations (2) and (8). Through Poisson's ratio this restraining curvature will affect
the principal curvature by an amount

1 { v ( 2 [COSh aw - cos aw])}
R' = -v Ii. 1- aw sinhaw+sinaw .

The final principal curvature is K = llR + l/R' which from equations (1) and (9) gives

M ,
K = -(1- Y-}')

EJ

where y, the anticlastic factor is defined by

2 [COSh aw - cos aw]}' = 1--
aw sinh aw + sin aw .

The factor }' is shown in Fig. 2 as a function of aw and it is clear that for a narrow beam
y -> 0 and equation (10) gives the usual result, equation (1). For a wide beam, equation (10)
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FIG. 2. The anticlastic factor y against the characteristic times the width aw.
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approaches the result for an infinitely wide beam or plate. y changes rapidly as aw increases,
but only approaches the plate value asymptotically.

REVIEW OF PREVIOUS WORK

The anticlastic curvature of bent beams was investigated by Lamb [3] and subse­
quently by several workers [4-8]. Ashwell [5) pointed out the applicability of beam on
elastic foundation theory. Gerard [6] produced an expression equivalent to y in the present
paper and stressed the fact that narrow beams "grow" into wide ones as the radius of
curvature decreases. Ashwell [5J has suggested that the second moment of area of the
deformed cross section should be used when calculating principal curvature, and includes
this in his expression whereas other workers ignore it. The refinement, which leads to con­
siderable complexity in the expression for curvature, will now be examined in detail.

Referring to the deformed cross-section of Fig. 3 the second moment of area of an
element of width dx and height h, with respect to the neutral surface is

1l-,~=-=--iL-------3!J-:~:~;
FIG. 3. Cross-section of a bent beam showing partial suppression of anticlastic curvature.

which may be expressed for the whole cross-section:

where <p = dji/dx is found from equation (4) to be

<p = 4EI,a
3 (COSh ax - cos ax)

Rk dl sinh ax +sin ax .

(12)

(13)

In other words, the second moment of area of the deformed cross-section is equal to
that of the undeformed cross-section (1 0 = h3w/12) with two additional terms. Integrat­
ing equation (12) using equations (4) and (13) and evaluating in dimensionless form
gives
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/ = ~ W h3
2 _ v2aw(~r . .

1 / f 12¢ dx - 24( . h . f(3 smh 2aw+3 sm 2awoJo sm aw+sIllaw

+4aw-4aw cosh aw cos aw- 6 sinh aw sin aw-6 cosh aw sin aw)

1 fW v2

/2 = ~/ h(y)2 dx = 4aw( . h . )2 (sinh 2aw-sin 2aw
o 0 SIll aw +SIll aw

-4aw sinhaw sin aw-2 sinh aw cos aw+2 cosh aw sin aw).

It remains now to assess the importance of terms /1 and /2 under conditions which might
be encountered in practice. For a beam bent to its elastic limit, the expression relating
curvature to bending stress may be written 2 y/E = h/R. The range of values of Y/E which
is of interest is from 0·001 for soft materials such as aluminium to about 0·01 for very high
strength steels. The higher figure is relevant here; i.e. h/Rlmax = 0,02, from which

R h
- > 50-.
w w

From equations (5) and (6)

and substituting from equation (14) (v = 0·3) gives

h 0·183
->--.
w aw

(14)

(15)

Relationship (15) between aw and h/w may be used to determine the maximum value of
/ l' The results of this exercise show that for all values of aw, /1 is < 10- 4 and may be
neglected 'compared with 1. The term /2' however, is considerably larger than /1' Taking
the case of v = 0·3 a plot of /2 against aw is shown in Fig. 4. It is seen that 12 has a maxi­
mum value of about 1·6 per cent of 10 in the region of aw = 3·5. The more accurate ex­
pression for bending, which replaces equation (10) and accounts for the distortion of the
cross-section of the beam due to anticlastic curvature is

M(I-v2 y)
K==---,----------=-------:------'---~-------------

[E10
( 1+4aw(Sinh;:+SinaWy) J
(sinh 2aw-sin 2aw-4aw sinhaw sin aw-2 sinh aw cosaw+2 cosh aw sin aw)

(16)
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FIG. 4. Dimensionless second moment of area term /2 against aw for Poisson's ratio = 0-3.

ALTERNATIVE EXPRESSION FOR DETERMINING CURVATURE

Equation (16) is rather complex for most structural and strength of materials applica­
tions, and the correction made in the denominator is small enough that the possibility ofan
approximate theory is worth examining. It will be observed that omitting the term 12 from
equation (16) will result in a curvature which is too large, whilst calculating a from equation
(6) without the lateral restraint (1- v2

) factor will result in a curvature which is too small,
but the quantitative effect of these simplifications will be small. The result of using the
simplified expression for curvature is shown in Fig. 5 in the form of percentage error as

Percent
Error

FIG. 5. Percentage error introduced by the simplified theory for beam curvature against aw at selected
values of Poisson's ratio.
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compared with the more accurate theory for a range of values of v. Clearly the error intro­
duced by the simplifications depends on the value ofPoisson's ratio and reaches a maximum
of about 3 per cent at v = 0·5, aw = 3·5. This represents an extreme case, however: for
most materials of practical interest the value of \' will be approximately 0·3, giving an error
of about 1 per cent. Such an error will be acceptable in many instances, particularly as the
approximate theory underestimates the bending stiffness of the beam.

For many applications, the exact theory will be discarded on account of its complexity.
Then the choice of a method for determining bending deflections is between narrow beam
theory or plate theory. Reference to Fig. 2 shows that for aw = 5, y = 0·5 and thus either
choice will be unavoidably in error by the same amount. Taking v = 0,3, the unavoidable
error is about 5per cent whereas the simplified theory suggested here gives an error less than
1 per cent. It is not possible to estimate from dimensions alone whether narrow beam or
plate theory is most suitable to a given situation. The possibility then exists of making a
considerably larger error (twice the unavoidable error) by an inappropriate choice. The
conclusion to be drawn is that by using the approximate theory presented here, curvature
may be determined with as much as a tenfold increase in accuracy.

The expressions which are proposed to calculate beam curvature, then, are:

where

(17)

Examination of equations (17) shows that because the parameter a is influenced by curva­
ture a solution cannot be arrived at directly. A solution is readily obtained by iteration,
however, as the convergence of aw is rapid. Therefore the use of equations (17) will not
introduce much additional labour or complexity into the calculation of curvature.

APPLICATIONS OF THE SIMPLIFIED THEORY

The equations presented in this paper are based on a beam of rectangular cross-section.
To apply them to other cross-sections would present difficulties if the second moment of
area ofthe transverse beam varies with length (i.e. width of principal beam). The complexity
of working with a non-prismatic transverse beam would preclude the application of this
analysis unless a suitable rectangular equivalent of the cross-section could be deter­
mined.

The loading on the beam need not be confined to "pure" end moments; other forms of
loading could also be considered. The beam must, however, be free to take up anticlastic
curvature as outlined in the first part of the paper. If constraints, geometry or the loading
distribution alter this freedom, then as Fung and Wittrich [9] point out, it will not be
realistic to apply the assumptions on which equations (17) are based.
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Initial beam curvature may have an important influence on the observed curvature of
a loaded beam. Beams with an initial principal or transverse curvature have been discussed
by Ashwell [7]. A case which is particularly suited to the use of the simplified theory arises
when the initial principal curvature is large, such that the elastic curvature has a negligible
effect on the value of aw, see reference [10].
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A6cTpaKT-l1ccne~yeTcli aHTHKnaCTll'feCKHH. H3fH6 H ~aeTCli KpaTKoe rrpe~cTaBneHHe ypaBHeHHH. rrpofH6a,
COOTBeTCTBylOll(ero H3fH6y. PaccMaTpHBaeTcli ell(e pa3 rrpe~bI~Yll(ali pa6oTa. 3aTeM rrpe~nafaeTcli

rrpH6nHJKeHHali 3aBHcHMocTb, KOTopali ~aeT B03MOJKHOCTb, C ManOH. ~06aBO'IHOH. 3aBTpaToll. Tpy~a,

3aKnlO'IHTb 3<fJ«IJeKT aHTHKnaCnl'IeCKOfO H3fH6a B paC'IeTaX KPHBH3HbI 6anKH.


